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Non-generic spectra1 statistics in the quantized stadium 
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Abstract We consider the effect of a contin;ous family of neuual (bauncing ball) orbits on 
the enngy spzhum of the quantiled stadium billiard. Using a semiclassical approximation we 
derive analpic expressions for standard No-point spectral measures. The corrections due to the 
bouncing ball orbifs amunt  for some of the Mn-generic features observed in the analysis of the 
spectrum of a stadium cavity which was recently measured. Once the bouncing ball contributions 
are subtracted. the spectrum is shown to be well reproduced by the semi-classical Uace formula 
based on unslable periodic orbill. We also swdy special patterns in the spectrum which are due 
to other non-generic features such as edge effects and ‘whispering gallery’ ua&ctories. 

Niels Bohr Institute. Blegdamsvej 17, Dk-2100 Copenhagen 0. Denmark 

1. Introduction 

The stadium billiard is one of the standard examples of a strongly chaotic system. It is one 
of the few cases which are proven to K- and B-systems [1,2], which display ergodicity 
and mixing. The stadium billiard w+s one of the first chaotic systems to be quantized, 
and where the levels statistics was shown to follow expressions derived from Wigner’s 
and Dyson’s random matlix theory (RMT) [3]. This observation marked the beginning of 
intensive research on the implications of classical chaos to the statistics of energy levels 
in the corresponding quantum system. The interest in the level statistics of the quantized 
stadium billiard was revived recently following, a high-precision measurement of the first 
1060 levels of a super-conducting stadium cavity [4]. A straightforward  anal lysis of the 
spectral fluctuations showed a systematic deviation of the long-range correlations in the 
A,-statistics from the RMT prediction. In this paper we will1explain the reason for this 
behaviour and show in detail how the good agreement with RMT can he restored. The 
authors of [4] actually applied our method to their data. 

The .semiclassical theory which shows that for generic systems ‘the level statistics 
are universal and follow the results of RMT was developed by Berry [5] ‘on the basis of 
Gutzwiller’s periodic orbit theory for the speCtral density [6,7]. A crucial assumption for 
the derivation of universality is that all the periodic orbits of the system are isolated and 
unstable. In the stadium billiard, however, there exists a non-generic set of neutral periodic 
orbits-the orbits which bounce perpendicularly between the parallel straight sections of 
the billiard boundary (‘bouncing ball orbits’). Such a continuous set of neutral orbits 
gives an additional contribution to the semiclassical expression for the level density [8,9]. 
Continuous sets of neutral orhits generically appear in integrable systems for which their 
semiclassical contribution to the level density has been derived in  IO]. We show in this 
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paper that the deviation of the energy statistics of the stadium billiard can be understood 
within the framework of Berry’s theory, if one additionally includes the conhibutions of 
the family of ‘bouncing ball orbits’. Our calculations can be extended in a straightfonvard 
manner to other strongly chaotic systems for which families of neutral periodic orbits exist. 

We also analyse the Fourier transform of the spectral density. We show that the length 
spectrum can be approximated well in terms of the conhibution of the family of ‘bouncing 
ball trajectories’ plus the contributions from periodic orbits according to Gutzwiller’s theory 
plus some additional edge corrections. Numerical examinations are carried out using the 
measured energy spechum of 141. 

2. The semiclassical energy density 

2.1. The contrihution of the family of neutral periodic orbits 

We consider a desymmetrized version of the stadium billiard which consists of a quarter 
circle of radius a adjoint to a rectande with side lengths a and h (see figure 5) .  The 
propagator K(q”.  g’, t) can be semiclassically approximated by a sum over all classical 
paths from g’ to g” 

The classical action R(g”, g‘, t )  of a path from g‘ to q” is given by 

I” 

R(q”,  g‘, t )  = j ,  ds  L(g, 4, r )  t = f” - t‘ (2) 

where L(q,e,t) = m$/2 denotes the Lagrangian of the system. The phase v is the 
number of conjugate points along the classical path plus twice the number of reflections on 
the boundary. 

The sum over paths is divided into two parts in order to obtain the contributions of the 
‘bouncing ball orbits’ 

K(d ‘ ,  9’. I )  = K&”, d.  t )  + Kdq”, d ,  t )  . (3) 

The first part Kb(q”. q’, t )  contains onlyconuibutions from paths which are reflected on the 
two straight line segments of length h only, and the second part K,(q”, 6. t )  contains the 
contributions of all remaining paths. The classical paths which contribute to &(q”, q’, t) 
can be obtained by the principle of mirror images. Consider the infinite number of straight 
lines which are parallel to the straight line segment of length h and which all have a distance 
a to their neighbouring lines. Then there is a one-to-one correspondence between all the 
paths in the billiard from g‘ to q” and all paths from d to the set of points which are 
obtained by arbitrary reflections of g” on the parallel straight lines. The lengths of these 
paths are given by 
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The lengths L,(n) correspond to paths with an even number of reflections on the boundary, 
whereas the lengths L,(n) correspond to paths with an odd number of reflections. One 
obtains 

The outgoing Green function is related to the propagator by the following equation 

G(q”, d.  E )  = lim dt K(q”,  q‘. t)exp [ ; ( E  + ie)t) 

After inserting (5) the integral can be done exactly [ 111 and results 6 

Here Ht’ denotes a Hankel function and k = m / h .  In the usual semiclassical 
approximation for the Green function the integral in (6) is done by a stationq-phase 
approximation. The semiclassical result for the function Gb(q”, q’, t) can be obtained 
from (7), if one replaces the Hankel function by its asymptotic approximation HA”(x) - 
m e x p ( b  - i ~ r p } ,  x --f co. 

The contribution of the ‘bouncing ball trajectories’ to the semiclassical level density is 
obtained through the relation 

(8) 

It is convenient to express the level density in terms of the wavenumber k 

h2k 
m 

z(k) = --d(E) 

One obtains 

here the first term in the second line of (10) contains the contributions of the orbits of the 
even class, which are periodic orbits and their multiple traversals. The contributions of the 
orbits of the odd class, which are closed but non-periodic orbits, were summed up to give 
the second term in (10). Using the asymptotic approximation for the .IO Bessel function one 
obtains the following approximation to db(k) 

b ( 4  = cos(2ank - x/4) . (11) - z;; 
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There are two different contributions to &(k) 

cib(k) % (cib(k)) + ciF(k) . (12) 

@(k) denotes the sum over oscillating terms, whereas (&(k)) denotes the first two terms 
on the right-hand side of (11). 

In a billiard, the mean level density is asymptotically given by the generalized Weyl 
law [I21 . 

Here A and L are the area and the length of the boundary of the billiard system, respectively. 
Thus, (&k)) consists of the contribution of the rectangle a x b to the leading term of the 
asymptotic approximation for (c?(k)), and of the contribution of the two straight sections of 
the boundary of length b to the next-to-leading term. 

The fact that starting from (5) the steps can be done exactly without the stationary 
phase approximation enables us to see in this case the effect of the usual semiclassical 
approximation, which is used for example for the derivation of Gutzwiller’s periodic-orbit 
theory. The contributions of the closed but non-periodic trajectories which are neglected 
in the stationary phase approximation yield the next-to-leading term in Weyl’s formula. 
If one calculates this term after replacing the Hankel functions in (7) by their asymptotic 
approximation, one obtains an expression which is wrong by a factor of d. 

Finally, an alternative expression for &(k) in which the kdependence can be seen more 
explicitly can be obtained by transforming (IO) with the use of the Poisson summation 
formula. This results in 

where 0 is the Heaviside theta function and k M  = zM/a  are the wavenumbers 
corresponding to the wavefunctions in a onedimensional infinitely high square well of 
width a. Although the function zb(k) diverges at k = kM, these wavenumbers do not 
necessarily correspond to semiclassical energies of the stadium billiard, since the order of 
the divergence is one half and not one. A discussion of such ‘false’ singularities for the 
case of the motion on a torus is given in [13]. 

From the results for the level density it is straightforward to obtain the semiclassical 
contributions to the spectral staircase fi(k) which is defined as the number of eigenvalues 
of the stadium with wavenumber below k 

k s(k) =#{k.lk, < k )  = dk‘&k’). (15) 

Integration of (IO) yields 

- abk2 bk bk 1 
Nb(k) = - - - 4- - c - JI (2kan) 

4 x 2 ~ 2 3 7  n n=I 

cos(2kan - 3ir/4) . (16) %- - -  
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Altematively, the result of integrating (14) is given by 

b m  
&k) = - m o c k  - kM) 

M = l  

Although our results have been derived for the example of the stadium billiard, they are 
more generally valid. They apply to all billiard systems in which families of neutral periodic 
orbits exist, in which every primitive~member has the same length and a phase factor 
exp(ixu/2) = 1. a then corresponds to half of the primitive length of a periodic orbit, and 
b is the geometrical width of the family. 

2.2. The contributions of the unstable periodic orbits 

The oscillatory contributions of the 'bouncing ball orbits' are similar in form to the 
contributions  of^ the isolated  unstable^ periodic orbits which are given by 

1" cos{nkl, - nxvy /2 )  e ( k )  = - 7 ~ 

x 

where I ,  and M y  are the length and the monodromy matrix of the orbit y .  respectively, 
and n 'is the number of repetitions. U, is equal to the maximum number of conjugate points 
along the orbit, plus twice the number of its reflections on the boundary. The contributions 
of the family of neutral tmjectories are in leading order of h larger by a factor of h-"*. 
However, the number of unstable orbits is exponentially proliferating and for that reason 
their contribution cannot be neglected [ S ] . ~  

2 3 .  The edge iontributions for the family of neutral periodic orbits 

In the derivation above edge effects have been neglected. In the vicinity of the two limiting 
orbits of the family of neutral periodic orbits mere are closed almost periodic orbits, i.e. their 
final momentum is almost parallel to the initial momentum. These orbits give a contribution 
to the level density, which is of the same order inh as the contribution of an unstable periodic 
orbit. The leading term of this contribution can be obtained analogously to the derivation of 
the contribution of an unstable periodic orbit to Gutzwiller's trace formula. The actions of 
the closed orbits in the vicinity of the two limiting periodic orbits are expanded up to second 
order, and the trace of the Green function is evaluated by a stationary phase approximation. 

We first consider the limiting neukal periodic orbit, which is reflected at the intersection 
between the straight line and &e quarter circle (see figure 5). For n = 1, i.e. for one traversal 
of the limiting periodic orbit,there exist only neighbouring closed orbits which stay in the 
quarter circle. Their contribution is given by 

where lel = 2a, Tr Me, = -2 and vel = 5 are the values for a periodic orbit along the 
symmetry line of a semicircle. In contrast to the contribution of an unstable periodic orbit 
there is an additional factor In since one integrates only over~the closed orbits on one side 
of the periodic orbit. The contributions from multiple traversals of the limiting periodic 
orbit invlove the integration over several families of neighbouring closed orbits. They are 
not treated here. 
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The derivation above did not take into account, that the curvature of the boundary is 
discontinuous at the intersection between the straight line and the quarter circle, and for that 
reason the semiclassical Green function is also discontinuous. A more accurate analysis can 
be carried out by adding corrections to the Semiclassical Green function due to diffraction 
effects at the intersection point. A further analysis, however, shows that after taking the 
trace of the Green function the diffraction effects are cancelled in leading order of f r .  For 
that reason, the leading term of the edge contribution is given correctly by (19) for the case 
n = I. 

In the case of the second limiting periodic orbit which runs along the left straight section 
of the boundary of length U (see figure 5). the neighbouring closed orbits have the property, 
that they are reflected n times on the upper, n times on the lower and one time on the left 
part of the boundary. Their contribution is given by 

where le? = k, Tr MU = 2 and vez = 4 are the values for one of the bouncing ball orbits. 
Again there is an additional factor of 1/2 in comparison to (IS), since one integrates only 
over closed orbits on one side of the limiting periodic orbit. A discussion of the symmetry 
origin of this factor 1/2 can be found in [14-161. Futthermore, there is an additional ( - H )  
in the argument of the cosine, and the trace of the monodromy matrix contributes with a 
different sign. This is due to the reflection on the left side of the boundary. 

2.4. Further edge contributions 

There are also contributions from closed almost periodic orbits in the vicinity of the unstable 
periodic orbit which runs along the lower saaight section of the boundary of length (a -t b). 
Again the derivation of this contribution can be done in analogy to the derivation of the 
contribution of an unstable periodic orbit for Gutzwillers trace formula. For every repetition 
number n one has to distinguish, however, between two families of closed orbits, one with 
an odd number of reflections on the lower part of the boundary and the other with an even 
number of such reflections. One obtains 

where le3 = 2(u 4- b), Tr Me3 = -2 - 4b/u and v,3 = 5. Again there is an additional factor 
of 1/2. The first and the second term in the sum are obtained from closed orbits with an 
even and an odd number of reflections on the lower part of the boundary, respectively. 

2 5 .  The contribution of the 'whispering gallery orbits' 

The situation is more complicated in the case of the upper part of the boundary which 
consists of a straight and a circular section. There is a periodic orbit of length I, = 
2b+ H U  = 135 which runs along this part of the boundary. It can be. considered as the limit 
of a family of an infinite number of periodic orbits ('whispering gallery orbits'). These 
orbits have the property that they are reflected consecutively n times at the circular part of 
the boundary. After these n reflections they are reflected back either at a straight section of 
the boundary or at a comer and retrace themselves. For every n E N there are four orbits 
corresponding to the four cases that the two 'endpoints' of the self-retracing orbits can be 
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either at a straight section of the boundary or at a comer. There have been doubts if the 
semiclassical approximation is valid for these periodic orbits, since the distance between 
neighbouring periodic orbits becomes arbitrarily small as the number n increases. There is, 
however, a high cancellation between the contributions of pairs of periodic orbits, such that 
effectively only a finite number of periodic orbits contribute. This will be demonstrated 
by numerical results in the next chapter. For that reason, we treat the 'whispering gallery 
orbits' as ordinary periodic orbits, i.e. their contribution to the level density is assumed to 
be given by ( I  8). 

Summing up all contributions to the semiclassical level density one has 

&k) (d^(k)) t @ ( k )  +c?F(k) + ~ c 2 y ( k ) ~  (22) 
Y 

where @(k) is the sum of the three different edge contributions. 

3. Fourier anaIysis of the spectrum 

The contributions of the periodic orbits to the level density can be extracted from the 
spectrum by a Fourier analysis. Since in an experimental situation one has knowledge 
only of a finite part of the spectrum we consider an integral which is cut off at a maximal 
wavenumber k,, 

(23) 

This function has peaks (or zeros) at lengths of periodic orbits. At this point the semiclassical 
approximation of the level density (22) is inserted into (23) in order to obtain the contribution 
of single periodic orbits. In general the sum over periodic orbits in (22) is not convergent. 
For that reason one has to consider a smoothed level density, for example a level density 
which is obtained by a Gaussian smoothing of (22) 1171. This also corresponds more closely 
to the experimental situation in which one always has a level density with peaks of finite 
widths. However, the smoothing can be chosen arbitrarily small, and since we  will consider 
only the contributions of a finite number of the shortest periodic orbits we will neglect it in 
the following. In this way we obtain peaks corresponding to 'bouncing ball mbits' of the 
form 

1 k- 
b ( x ,  k ) - dk cos(kn)[&k) - (i(k))l. - -~KL 

~ ~ 

where f ( z )  is a line-shape function which can be expressed in terms of Fresnel functions 
[ I  11 
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Figure 1. The line-shapc function / ( r )  as defined in (U). 

The contribution of an isolated unstable orbit is given by 

(26) 

The edge contributions can be obtained from (26) s!iaightfonvardly by taking into account 
the differences between @=(k) and &(k), Jg(k) and @(k), respectively. 

One main difference between the peaks of unstable orbits and the family of neutral 
orbits is that the height of the peaks of the family of orbits depends on the cutoff kmr 
whereas the peaks of unstable orbits do not In this way the peaks at the neutral orbits can 
be recognized by varying kmm. 

Note that the function (26) yields a positive or negative peak at the position of the 
length of the nth traversal of a primitive periodic orbit, if the number nu, is even. In the 
case where this number is odd one obtains a zero at the position of the length, which lies 
between a positive and a negative peak. 

We present some numerical results for the finite Fourier transform b(x, kmar). They 
have been evaluated using the first 1060 energy eigenvalues of a spec!”. These energies 
were determined in an experiment which measured the eigenmodes of a superconducting 
microwave resonator in the shape of a quarter of a stadium billiard with a = 20 and b = 36 
[41. (We use dimensionless units in which fi = 2m = 1.) The experimental results are then 
compared with semiclassical results using periodic orbits. Differences between both results 
are due to experimental limitations and/or errors in the semiclassical approximation. 

Figure 2 shows the function b ( x ,  k-) in the vicinity of x = 40, which corresponds 
to the first traversal of the ‘bouncing ball orbits’. In this region of x the contributions 
of the unstable periodic orbits can be neglected, so that b ( x ,  k-) is mainly given by 
the contribution of the family of neutral orbits. There is a very good agreement between 
b ( x ,  kma) and b&, kmar). Figure 3 shows the difference between these two functions. 
This difference is compared with the edge correction & ( x ,  kmx) + b&, kmm). Here 
the agreement between both curves is not very good. However, since the edge correction 
is a small effect in comparison to the main contribution of the bouncing ball orbits, its 

sin[k,,(x + nZy) - xnuy/2] + sin[srnuy/21 + 
km(x+nly )  
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Figure 2.~The function b(x. k,,,d (full curve) in comparison with &(x. k m d  (broken curve). 

-2.5 " ' " " ' " ' " " " ' 
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x 

Figure 3.. The difference between ule two curves-in figure 2 bp, k-) - &(x,  k-) (full 
curve) in comparison with the edge conkibutions De, ( x ,  k-) + D d x .  k-) (broken curve). 

determination from the experimental data is very sensitive to the exact geometrical data of 
the microwave cavity. For the evaluation of figures 2 and 3 we already used a corrected 
value of the length a = 19.96, which was obtained from the position of the first peaks at 
the lengths of the bouncing ball orbits and their repetitions. There might be some other 
geometrical inaccuracies, for example a slight imperfection of the cavity in the transition 
region between the straight and the circular part of the boundary such that the radius of 
curvature does not change abruptly but smoothly [4]. 

In figure 4 b(x,k-.) is shown in a region where many unstable periodic orbits 
contribute and there are also multiple traversals of the family of neutral orbits. All periodic 
orbits with length below x = 2OQ have k e n  determined. There is a good overall agreement 
between the experimental and theoretical results. At x 142 there is some deviation 
between both curves, which is not fully understood. It might be connected with an unstable 
periodic orbit which has two reflection points in the vicinity of the intersection of the circular 
and the straight section of the boundary (see figure 5). This orbit is sensitive to the exact 
geometrical shape of the cavity in this region and thus might be affected by a geometrical 
imperfection as mentioned above. 
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110 120 130 140 150 160 170 180 190 
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Figure 4. 
approximation (broken curve). 

The function 8 ( x . k m 3  (fun curve) in comparison with its semiclassical 

Figure 5. I b o  of the ‘whispering gallery orbits’ (broken and dotted curves). and a non-self- 
retracing orbit (full curve), which has WO reflection points close to the intersection beween 
the straight segment and the circular segment of the boundary. The chain curve shows the last 
‘bouncing ball orbit‘. 

As was discussed in the last section there is an infinite number of periodic orbits 
with length below x = 200, since there is an accumulation point of periodic orbits at 
x = 2b + HQ % 135 Cwhispering gallery orbits’). However, the experimental length 
spectrum does not reveal any special structure for x % 135, and the agreement between 
semiclassical theory and experiment is rather good in this domain. A possible explanation 
for this is the fact that there exists a high cancellation between the contributions of pairs of 
periodic orbits, such that effectively only a finite number of periodic orbits contribute. For 
every orbit which has a reflection point on the left straight vertical section of the billiard 
boundary, there exists another very similar orbit which has a reflection point in the upper left 
comer of the billiard boundary (see figure 5). Both orbits have almost the same length and 
instability exponent, but the number uy differs by two. Thus they give an almost identical 
contribution to the periodic-orbit sum but with a different sign. This is shown in figure 6 
for two pairs of orbits with n = 2 and n = 3. The effectiveness of the cancellation increases 
very rapidly with n and for n = 3 it is almost complete. 
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Figure 6. Left: The contributions ofihe two 'whisperinggallery orbils' of figure 5 to 6 ( x ,  k-) 
(broken and dolled curves). The full c w e  shows the sum ofthe two conhibutiom, which almosl 
cancel each other. Right The conkibutions of  two 'whispering gallery orbits', which have ulree 
reflection points on the circular section of the boundary. 

4. spectral statistics 

In this section we discuss the influence of the presence of the family of neutral periodic 
orbits to energy statistics which are bilinear in the level density. For that purpose we 
consider a two-point correlation function of the oscillatory part of the level density 

. ~ k(&) = (da"(E + &/2)dos(E - ~ / 2 ) ) / ( d ( E ) )  . (27) 

Equation (27) has to be evaluated in the semiclassical regime where E is large. ( ) denotes 
an energy averaging over an energy interval which is small in comparison to E, but contains 
a large number of energy levels. dasc(E) semiclassically consists of the contributions of the 
two kind of periodic orbits 

(the edge contributions are included in d y ( E ) ) .  At this point the semiclassical 
approximation for the level densify is inserted. One obtains a double sum over periodic 
orbits, which contains energydependent oscillatory terms of the form cos(& - SI) and 
cos(& + Si), respectively, where Si and Sj are the classical actions of the indifferent or 
unstable periodic trajectories. Because of the energy averaging over a semiclassically large 
interval AE most of the non-diagonal terms in the double sum can be neglected. Only 
terms with very small action differences will not be washed out by the energy averaging. 
We assume here that due to this energy averaging the interference terms between the 
contributions of the neutral trajectories and the contributions of the unstable trajectories 
can be neglected in the semiclassical regime. Then 

k k )  = (d,O"(E + & / 2 ) d F ( E  - & / Z ) ) / ( d ( E ) )  + (d,OYE + ~ / 2 ) 4 - ' ( E  - & / 2 ) ) / ( d ( E ) )  



6228 M Sieber et ai 

k&) contains only contributions from the unstable periodic orbits. According to the theory 
of Berry [51 ‘k&) (after unfolding) agrees with the correlation function of the Gaussian 
orthogonal ensemble (GO€) for E << E-. where E,, = 2xfr/Tmi. and Tmio is the period of 
the shortest unstable periodic orbit For E >> E~ k&) deviates from the GOE expectation 
due to the presence of a shortest periodic orbit. 

kb(E) is evaluated by inserting the oscillatory part of db(E) from equations (9) and (1  1) 

log - I -cos- [;( h2k 
- m2ab2 - 

4rr3fi4k{d(E)) (30) 

where k+ = J2m(E + ~ / 2 ) l f i  and k- = & n ( E  - &/2)/fi. We made use of the fact that 
due to the energy averaging only the diagonal terms of the double sum give a significant 
contribution to kb(&), and we consider values E << E. 

The number variance E2(L)  is defined as the local variance of the number of energy 
levels in an energy interval, which has the size of L mean level spacings. It is expressed 
in terms of the correlator as 

Using (29) the semiclassical approximation to Z 2 ( L )  can be divided into a part with 
contributions from the neutral periodic orbits and a part with contributions from the unstable 
periodic orbits. With (30) one obtains the ‘bouncing ball orbits’ contribution to Z 2 ( L )  as 

kb2 1 
4x3a E lZ=l 2[ cos [ h2k(d(E)) 

g ( L )  = -- 

Another statistic is the spectral form factor K ( t )  which is defined as 

m 
& exp(isT/fi}k(&) , (33) 

where r ~ =  T/(Zxh(d(E))) is time in units of the Heisenberg time. For very large energies 
we can use (30) in order to obtain the contributions of the neutral periodic orbits to K(s) . .  as 

) + S ( r -  xfi2k(d(E)) 
m2ah2 man 

4 ~ ~ f r ‘ k ( d ( E ) ) ~  z’:[ ( nfi2k(d(E)) 
6 r +  K d r )  = 
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0.9 
0.8 

i.e. Kb(7)  consists of a series of delta peaks at times which correspond to traversals of 
orbits of lengths 2an. 

K ~ ( T )  and E$) are related through the equation 

- 

. -  
Finally the contribution to the spectral rigidity is obtained as 

1.0 . , ~ / . , . , . 1 . , 1 , . 1 ~ I  

F .....,.....,. , ,  .. .....,......... ............., .., ,... . ... ......,..... c 
0.7 - - 0.6 - 

Q 
0.5 

dm 0.4 

v - 

0.3 - 
0.2 

0.1 

0.0 

- 
- 

(36) 
6 

z4n4 
+ -[cos(znL) 

where z = 2ma/(Fi2k(d(E))). This result is in good agreement with the experimental result 
of GrS er al [4] .  

Figure 7 shows an evaluation of A!(L) for a ratio b/a = 1.8 at an energy which satisfies 

In the limit L + 00, A,~(L> saturates 
( N ( E ) )  = 500. 

L 

Figure 7. The contribution A$) of the family of neutral periodic orbits 10 the spectral rigidity. 



6230 M Sieber et a1 

Acknowledgments 

We are grateful to Professor Achim Richter for the kind provision of the eigenfrequencies of 
the stadium-shaped microwave cavity. This research was supported in part by grants from 
the US-Israel Binational Science Foundation (BSF) and the Basic Research Foundation of 
the Israel Academy of Sciences. MS would like to thank MINERVA for financial support. 

References 

[I] Bunimovich L A  I979 Commun. Mafh. Phys. 65 295 
I21 Bunimovich L A 1991 Chaos 1 187 
[31 McDonald S W and Kautinan A N 1979 Phys. Rev. Len. 42 1189 
[41 Gr2f S W. Hamey H h h g e l e r  H. Lewenkopf C W, Rangscharyulu C Richter A, Schardt P and 

[SI Beny M V 1985 Pmc. R. Soc. A 400 229 
[61 Gutzwiller M C 1971 J .  Math. Phys. 12 343 
PI Gutmiller M C 1990 Chaos in Clarsical and Qwnnun M e c h i c s  (New York: Springer) 
[SI Berry M V 1981 Ann. Phys., NY 131 163 
[91 Cmgh S C and Litilejohn R G 1991 Phys. Rev. A 44 836 

[IO] Berry M V and Tabor M 1977 J.  Phys.A: Math. Gen. 10 371 
[I I] Gradshteyn I S and Ryzhih I M 1965 Tabk Oflnfegmls, Series, and prodvcrs (New York Academic) 
[I21 Balas H P and Elf E R  1976 Specva @Finite Sysrems (Mannheim Bibliographisches Institut) 
I131 Keating J P and Berry M V 1987 J.  Phys. A: Math. Gen. 7A L1139 
[I41 HOnig A and Wintgen D 1989 Phys. Rev. A 39 5642 
[I51 Sieter M 1991 Pho Thesis University of Hamburg 
[I61 Lauriuen B 1991 Phys. Rev. A 43 603 
[I71 Aurich Q Sieber M and Steiner F 1988 Phys. Rev. Lett. 61 483 

Weidenmiiller H A 1992 Phys. Rev. Lett. 69 1296 

, 


